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BACKGROUND: It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to
environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations
could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the sci-
entific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or
transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental fac-
tors of health and disease.

OBJECTIVES: We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disrup-
tors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be
taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology.
DISCUSSION: Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epi-
genomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by research-
ers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the
foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/
EHP6104

Introduction
Exposure to environmental chemicals in the air, water, soil, food,
and consumer products, whether intentional or not, is an everyday
occurrence (ACOG Committee Opinion No. 575 2013). Because
global chemical production and usage are projected to increase in
the coming decades (OECD 2012), there is a growing recognition
that, although many comforts of modern life are due in part to
chemicals that are on the market today, their sound management
is critical for the preservation of human health and the environ-
ment (Massy and Jacobs 2013).

A recent assessment by an expert panel convened by theWorld
Health Organization estimated that as many as 20% of cancers,
31% of cardiovascular diseases, 42% of stroke cases, and 35% of
chronic obstructive pulmonary disease cases are attributable to
environmental factors (Prüss-Ustün et al. 2016). Chronic illnesses
that may be caused or exacerbated by environmental chemicals
include asthma, obesity, Alzheimer’s disease, diabetes, infertility,
and ovarian dysgenesis syndrome (reviewed by Bijlsma and
Cohen 2016). Taken together, it has been estimated that the health
and socioeconomic costs associated with environmental chemical
exposure are likely to exceed 10% of the global gross domestic
product, amounting to approximately $6.23 trillion (Grandjean and
Bellanger 2017).

These reports indicate that there are major inadequacies in cur-
rent risk assessment and hazard management practices. First, toxic-
ity studies are generally conducted with individual chemicals with
the objective of providing an estimated point of departure (Goodson

et al. 2015). Such assessments, although undoubtedly useful, are
ineffective at predicting the hazardous effects of chemicals that ex-
hibit nonmonotonic dose responses and low dose relationships
(reviewed byVandenberg et al. 2012) and fail to account formixture
effects (reviewed by Bijlsma and Cohen 2016). An additional chal-
lenge is that a subgroup of these chemicals, endocrine-disrupting
chemicals (EDCs), can mimic or alter endogenous endocrine proc-
esses (Alofe et al. 2019). Therefore, it is often challenging to dis-
entangle the effects of environmental hazards (such as EDCs)
from those of inherent differences within and between popula-
tions (Nadal et al. 2005). Indeed, multiple reports have shown
that the effects of an exposure could differ in individuals depend-
ing on the individuals’ age or sex (ACOG Committee Opinion
No. 575 2013). The burden of environmental hazards is reported
to be inequitably distributed according to socioeconomic status,
disproportionately affecting vulnerable populations (Brown 1995).
Moreover, efforts to pinpoint associations between environmental
chemicals and health effects in longitudinal studies are often compli-
cated by the fact that chemical environments change relatively rap-
idly over time (LaKind et al. 2016).

To date, several major classes of hazardous or potentially hazard-
ous environmental chemicals have been identified. These include
toxic elements (e.g., arsenic, cadmium, lead, mercury); naturally
occurring animal, plant, and food allergens; pesticides, persistent
organic pollutants (e.g., perfluorooctanoic acid, polychlorinated
biphenyls); volatile organic compounds (e.g., benzene, formalde-
hyde, gasoline); plastic components (e.g., bisphenol A, phthalates);
and air pollutants (e.g., asbestos, radon, tobacco smoke) (reviewed
by Bijlsma and Cohen 2016; Sears and Genuis 2012). Biochemical
effects commonly reported to be triggered by environmental toxi-
cants include oxidative stress, endocrine disruption, genotoxicity,
enzyme inhibition, epigenetic changes, and dysbiosis (reviewed by
Herceg et al. 2018; Sears and Genuis 2012). Evidently, there is a
need for a concerted effort across all levels to understand andmitigate
the impact of toxic exposures on human health and the environment.

A compelling puzzle in the field is the observation that a sub-
group of environmental toxicants can induce persistent phenotypic
effects after transient exposures, generating adverse effects that
can bemanifested years or even generations later (Gore et al. 2011;
Skinner et al. 2008; Uzumcu et al. 2004; Vandenberg 2013).
Although the mechanisms by which these long-lasting or transge-
nerational adverse effects occur have yet to be fully elucidated, one
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explanation for this phenomenon is that environmental toxicants
could perturb epigenetic mechanisms (Verma 2015). Described as
the interface between the environment and the genome, epigenetic
marks are responsive to environmental stimuli and transmissible
and are, therefore, promising mechanisms by which the effects of
environmental toxicants are perpetuated (Herceg and Vaissière
2011).

In this commentary, we discuss the impact that environmental
chemicals can have on epigenetic regulation, the impacts of
chemical-induced epigenetic changes on health outcomes, current
risk assessment strategies for detecting epigenetic modifiers, and
the unique challenges of and strategies for incorporating epige-
nomic analyses in toxicology.

Epigenetics and Its Growing Role in Environmental
Epidemiology
Epigenetic mechanisms refer collectively to mitotically or meioti-
cally heritable alterations in gene expression (and associated phe-
notypic traits) that do not arise from changes in DNA nucleotide
sequences (reviewed by Bird 2002; Feil and Fraga 2012). The defi-
nition of epigenetics encompasses chromatin modifications that
directly influence chromatin conformation (i.e., DNA methylation
and histone posttranslational modifications), as well as the activity
of noncoding RNAs (ncRNAs), in view of accumulating evidence
that ncRNAs can influence chromatin conformation and induce
heritable effects (Ashe et al. 2012; Braconi et al. 2010; Buckley
et al. 2012; Burton et al. 2011; Esteller 2011; Fabbri et al. 2007;
Garzon et al. 2009; Lei et al. 2016) (Figure 1). Although these three
modes of epigenetic regulation converge on a common cellular
process (i.e., regulating gene expression), the mechanisms may act
with different degrees of dynamic effects, strengths, and reversibil-
ity (Bintu et al. 2016). Moreover, although they are often studied
independently, it is becoming increasingly clear that there is exten-
sive cross-talk between DNA methylation, histone modifications,
and ncRNAs (Hanly et al. 2018; Rose and Klose 2014; Vaissière
et al. 2008).

Epigenetic mechanisms regulate transcriptional activity across
the genome and can thereby determine temporal and spatial gene
expression patterns (Baylin and Jones 2011; Jaenisch and Bird
2003). The heritability of epigenetic marks allows for faithful
maintenance of cell identity (Lee et al. 2014), whereas their revers-
ibility allows for developmental plasticity, enabling the manifesta-
tion of different phenotypes in response to developmental cues and
environmentally induced changes from a single unchanged geno-
type (Low andGluckman 2018). Although some degree of stochas-
tic epigenetic alterations, or epigenetic drift, can be observed in
aging or as asymptomatic occurrences (Bjornsson et al. 2008; Feil
and Fraga 2012; Fraga 2009;Wong et al. 2010), epigenetic aberra-
tions have been described as important drivers of neurological dis-
eases and cancer (Herceg et al. 2018; Zoghbi and Beaudet 2016).
Therefore, external stimuli that can cause shifts away from base-
line rates of age-related epigenetic drift have been described as ele-
ments that cause “environmental deflection” (Kochmanski et al.
2017).

Moreover, epigenetics can provide key mechanistic evidence
for the developmental origins of health and disease (DOHaD) hy-
pothesis (Goyal et al. 2019). The DOHaD concept was proposed as
a means to explain epidemiological evidence linking early life ex-
posure to environmental factors with the onset of adverse health
effects later in life (Barouki et al. 2018; Barrett 2017; Bianco-
Miotto et al. 2017). DOHaD proposes that early developmental
stages are windows of vulnerability to psycho-social or chemical
stressors. Hence, relatively small alterations at this stage of life
could have impacts on risk of diseases across the life course into
adulthood. This is in line with the notion that profound epigenetic

reprograming, characterized by a sequential genome-wide erasure
and de novo lineage-specific establishment of epigenetic marks,
underlies pluripotency and lineage commitment, which occur early
in embryonic development (Lee et al. 2014). Thus, perturbations
during this window of development could enable the propagation
of aberrant epigenetic patterns and associated gene activity states
at doses of exposure that would otherwise be biologically inconse-
quential (Anway et al. 2005; Breton et al. 2017).

Environmental Toxicants as Disruptors of Epigenetic
Regulation
Following the frequent inclusion of epigenetics as a parameter in
environmental epidemiology studies, numerous reports have been
made in recent years associating alterations in DNA methylation
with various environmental factors, including biological agents,
dietary habits, and air pollution (Ambatipudi et al. 2016; Barouki
et al. 2018; de FC Lichtenfels et al. 2018; Degli Esposti et al.
2017; Fasanelli et al. 2019; Feil and Fraga 2012; Hattori and
Ushijima 2016; Herceg et al. 2018; Martin and Fry 2018; Perrier
et al. 2019; Woo et al. 2018). Similarly, many reports indicate
that microRNA (miRNA) profiles are responsive to various envi-
ronmental exposures, including air pollution [R Chen et al.
(2018); Espín-Pérez et al. (2018), both epidemiological studies],
nanoparticles [Brzóska et al. (2019), utilizing human liver cells],
endocrine disruptors, such as bisphenol A (BPA) [Chou et al.
(2017), using human endometrial cells, and Martínez-Ibarra et al.
(2019), using human blood samples], and dichlorodiphenyltri-
chloroethane (DDT) [Krauskopf et al. (2017), using human
blood]. Long noncoding RNAs (lncRNAs), although still a rela-
tively new area of research, have been reported to be associated
with levels of phthalates in first trimester urine of pregnant
women (LaRocca et al. 2014), benzene in seven exposed individ-
uals (Bai et al. 2014b), and occupational exposure to cadmium
(Zhou et al. 2015) and to be responsive to developmental expo-
sure to BPA in mice (Kumamoto and Oshio 2013) and to certain
heavy metals in in vitro (Tani et al. 2014; Zhou et al. 2015) and
in vivo experimental systems (Zhou et al. 2015). Alterations to
histone marks have been reported in response to various substan-
ces including arsenic in mice (Cronican et al. 2013) and in cell
lines (Jo et al. 2009; Li et al. 2002; Zhou et al. 2009), BPA
[Senyildiz et al. (2017), using human neuroblastoma cells],
phthalates [Sonkar et al. (2016), in mesenchymal stem cells], and
dichlorodiphenyltrichloroethane [Ben Maamar et al. (2018), in
male rats descended from exposed gestating female rats].

Table 1 provides a non-exhaustive summary of environmental
chemicals with demonstrated epigenome-altering properties. Here,
we discuss three salient examples, namely, benzene, vinclozolin,
and BPA, in greater detail.

Benzene—Epigenome Perturbations at Low-Level
Exposures
Benzene, a commonaromatic compound in crude oils, is a human car-
cinogen (IARC 2018) and may be one of the most potent epigenetic
modifiers in the environment. Airborne, occupational exposure to
benzene has been consistently associatedwith hypomethylation in re-
petitive elements in peripheral bloodDNAobtained fromoccupation-
ally exposed individuals (Bollati et al. 2007; Fustinoni et al. 2012;
Seow et al. 2012) and is associated with lower levels of O6-methyl-
guanine-DNA methyltransferase (MGMT) promoter methylation in
whole blood DNA (Li et al. 2017). Of note, significant differential
methylation was reported between a group of individuals with a me-
dian personal benzene exposure of 22 lg=m3 (Bollati et al. 2007) and
in individuals exposed to a median 8-h time-weighted average ben-
zene exposure of 110lg=m3 (Li et al. 2017), both ofwhich are below
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the National Institute of Occupational Safety and Health’s recom-
mended exposure limit for benzene (320 lg=m3) (NIOSH 2019).
Similarly, individuals exposed to benzene at median concentrations
of 120 lg=m3 had significantly higher global levels of H3 lysine 4

trimethylation (H3K4me3) marks compared with a control group
(J Li et al. 2018). Perturbations tomiRNA (Bai et al. 2014a; Yang Liu
et al. 2016) and lncRNA (Bai et al. 2014b) expression have likewise
been detected in pooled plasma (Yang Liu et al. 2016) and peripheral

Figure 1. Diagrammatical summary of epigenetic modes on action. (A) The deposition of methyl groups is mediated by the DNA methyltransferases
(DNMTs), and their removal is mediated by the ten-eleven translocation (TET) family proteins (reviewed by Greenberg and Bourc’his 2019; Wu and Zhang
2010). Increased deposition of methyl groups promotes the condensation of chromatin, whereas reduced DNA methylation is associated with increased accessi-
bility to transcription machinery [represented by RNA polymerase II (Pol II)]. DNA hypermethylation generally leads to the silencing of gene expression when
it occurs at gene promoters (reviewed by Greenberg and Bourc’his 2019; Wu and Zhang 2010). (B) Histone modifications are deposited by multiple classes of
enzymes [histone acetyltransferases (HATs), histone methyltransferases (HMTs), histone deacetylases (HDACs), and histone lysine demethylases (KDMs)]
(reviewed by Chen et al. 2017). Examples of histone modifications illustrated here are histone H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 9 trime-
thylation (H3K9me3), which are usually associated with repression of gene transcription, and H3 lysine 4 monomethylation (H3K4me1), H3 lysine 4 trimethy-
lation (H3K4me3), H3 lysine 36 trimethylation (H3K36me3), and H3 lysine 27 acetylation (H3K27ac) marks that are typically associated with activation of
transcription. Simultaneous deposition of opposing histone marks is associated with poised or bivalent chromatin, which is in a transitional state poised to be
resolved into active or repressed states (reviewed by Chen et al. 2017). (C) microRNAs (miRNAs) bound to the Argonaute (AGO) protein make up the
miRNA-induced silencing complex (miRISC). miRNAs direct the miRISC to target mRNAs base-pairing partially to complementary binding sites, which will
be cleaved by catalytically active AGO proteins (O’Brien et al. 2018). Alternatively, AGO proteins can recruit additional protein partners, initiating the process
of deadenylation, decapping and 5 0-to-3 0 mRNA degradation by 5 0-to-3 0 exoribonuclease 1 (XRN1) (reviewed by Jonas and Izaurralde 2015). There has also
been evidence that miRNAs inhibit translation by inhibiting the eukaryotic initiation factor 4F (eIF4F) complex, although this process has yet to be fully eluci-
dated (reviewed by Jonas and Izaurralde 2015). 5 0 polyA tails are denoted by circles labeled A. (D) Long noncoding RNAs (lncRNAs) may influence gene
expression by increasing or decreasing target mRNA stability, by acting as decoys to miRNA and transcription factors (TFs), thus sequestering them from their
cognate promoters, or they may recruit or inhibit TF binding to their target sites on the chromatin (reviewed by Angrand et al. 2015). lncRNAs may also recruit
chromatin remodeling factors (CRFs) such as the polycomb repressive complexes or cohesin proteins that recruit histone modifier complexes or initiate long-
range chromatin looping (reviewed by Angrand et al. 2015). The Xist lncRNA triggers stable repression of the presumptive inactive X-chromosome by physi-
cally coating the X-chromosome (reviewed by Lee and Bartolomei 2013).
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Table 1. Summary of evidence of environmental chemicals and their effect on epigenetic regulation.

Environmental chemicals

Experimental evidence
Observational

evidence

Epigenetic impact ReferencesHuman Animal In vitro Human Animal

Organic pollutants
2,3,7,8-tetrachloro-dibenzo-
p-dioxin

— + + — — DNA methylation Bastos Sales et al. 2013; Ding et al. 2018

Benzene — + + + — DNA methylation Bollati et al. 2007; Coulter et al. 2013;
Fustinoni et al. 2012; Hu et al. 2014; Ji et al.
2010; Li et al. 2017; Seow et al. 2012; Yang
et al. 2014

Histone marks J Li et al. 2018
Noncoding RNA Bai et al. 2014a; Yang Liu et al. 2016; Wei et

al. 2015
BPA — + + + — DNA methylation Anderson et al. 2012, 2017; Bansal et al. 2017;

Basak et al. 2018; Bastos Sales et al. 2013;
Bromer et al. 2010; Cheong et al. 2018;
Dolinoy et al. 2007; Doshi et al. 2011, 2012;
Drobná et al. 2018; González-Rojo et al.
2019; Goodrich et al. 2016; Ho et al. 2006;
Itoh et al. 2012; Jadhav et al. 2017;
Jorgensen et al. 2016; Kitraki et al. 2015;
Kumar and Thakur 2017; Kundakovic et al.
2013; Laing et al. 2016; Lee et al. 2018; G
Li et al. 2014; Y Li et al. 2018; Yan Liu et
al. 2016; Mao et al. 2015; Miao et al. 2014;
Novo et al. 2018; Patel et al. 2013; Prins et
al. 2008; Senyildiz et al. 2017; Susiarjo et
al. 2013; Tang et al. 2012; Taylor et al.
2018; T Wang et al. 2016; Weinhouse et al.
2015; Ye et al. 2019

Histone marks Doherty et al. 2010; González-Rojo et al. 2019;
Ho et al. 2015; Hussain et al. 2015; Jiang et
al. 2016; Kumar and Thakur 2017; Lee et al.
2018; Y Li et al. 2018; Lombó et al. 2019;
Perrot-Applanat et al. 2018; Santangeli et al.
2016; Senyildiz et al. 2017; Verbanck et al.
2017; Q Wang et al. 2016; T Wang et al.
2016

Noncoding RNAs Bhan et al. 2014; Chou et al. 2017; Ho et al.
2015; Kumamoto and Oshio 2013; Perrot-
Applanat et al. 2018; Renaud et al. 2017

BPA substitutes
(bisphenol AF, F, and S)

— + + — — DNA methylation Huang et al. 2019
Histone marks Ding et al. 2017
Noncoding RNAs Verbanck et al. 2017

Endosulfan — + — — — DNA methylation Milesi et al. 2017
Glyphosate — + — — — DNA methylation Smith et al. 2019
Hexachlorobenzene — — + — — DNA methylation Bastos Sales et al. 2013
Methoxychlor — + — — — DNA methylation Anway et al. 2005; Stouder and Paoloni-

Giacobino 2011; Gore et al. 2011;
Manikkam et al. 2014; Zama and Uzumcu
2009

n-Butylparaben — + — — — DNA methylation Zhang et al. 2016
Organophosphate flame-
retardant (e.g., BDE-47,
tetrabromobisphenol A)

— + + + — DNA methylation Bastos Sales et al. 2013; Byun et al. 2015;
Soubry et al. 2017

Histone marks Otsuka et al. 2014
Phenols (e.g., 4-nonylphe-
nol, 4-octylphenol)

— — + — — Histone marks Ghosh et al. 2019; Hung et al. 2010

Phthalates — + + + — DNA methylation C-H Chen et al. 2018; J Chen et al. 2015;
Grindler et al. 2018; LaRocca et al. 2014;
Martinez-Arguelles and Papadopoulos 2015;
Solomon et al. 2017; Stenz et al. 2017;
Tindula et al. 2018; Wu et al. 2017; Xia et
al. 2018; PJ Yang et al. 2018

Histone marks Gutiérrez García et al. 2019; Sonkar et al. 2016
Noncoding RNAs LaRocca et al. 2016; Machtinger et al. 2018;

Martínez-Ibarra et al. 2019; Meruvu et al.
2016; Stenz et al. 2017; Zhong et al. 2019

Polyhalogenated biphenyls
(e.g., polybrominated
biphenyl and polychlori-
nated biphenyls)

— + + + — DNA methylation Bastos Sales et al. 2013; Curtis et al. 2019;
Matsumoto et al. 2014; Priya et al. 2018

Histone marks Casati et al. 2013

p,p 0-DDE — + — — — DNA methylation Song et al. 2014; Song and Yang 2018
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blood mononuclear cell (Bai et al. 2014a, 2014b) samples of
benzene-exposed individuals. Although it has been reported
that environmental exposures to benzene also affect the tran-
scriptome in blood mononuclear cells (McHale et al. 2009,

2011), the direct contribution of benzene-induced epigenetic
alterations to the transcriptome remains to be established.

Benzene and some of its metabolites have also been shown to
induce global hypomethylation in in vitro (Coulter et al. 2013; Hu

Table 1. (Continued.)

Environmental chemicals

Experimental evidence
Observational

evidence

Epigenetic impact ReferencesHuman Animal In vitro Human Animal

Pharmaceutical compounds
Cyproterone acetate — — + — — Nucleosome

occupancy
Ankolkar et al. 2018

Diethylstilbestrol — + + — — DNA methylation Bastos Sales et al. 2013; Bromer et al. 2009;
Chen et al. 2015; Singh et al. 2018

Histone marks Jefferson et al. 2013; Sato et al. 2006, 2009;
Singh et al. 2018

Noncoding RNA Bhan et al. 2014; Padmanabhan et al. 2017;
Singh et al. 2018; Stenz et al. 2017

Exogenous estrogen (e.g.,
ethinyl estradiol, estradiol
benzoate)

— + + — — DNA methylation Cheng et al. 2008; Cheong et al. 2018; de
Assis et al. 2012; Gore et al. 2011; Ho et al.
2006; Meunier et al. 2012; van der Weijden
et al. 2018; Y-M Yang et al. 2018

Noncoding RNA Maillot et al. 2009; Meunier et al. 2012
Tamoxifen — + + — — DNA methylation Stone et al. 2012; Tryndyak et al. 2007

Nucleosome
occupancy

Ankolkar et al. 2018

Histone marks Tryndyak et al. 2006
Dietary compounds
Epigallocatechin gallate — + — — — Histone marks Lombó et al. 2019
Phytoestrogens (e.g., genis-
tein, resveratrol, and
daidzein)

+ + + — — DNA methylation Adjakly et al. 2011; Bosviel et al. 2012;
Dolinoy et al. 2007; Fudhaili et al. 2019;
Jadhav et al. 2017; Kala and Tollefsbol
2016; Lou et al. 2014; Majid et al. 2010;
Qin et al. 2009; Tang et al. 2008; Vanhees
et al. 2011; Xie et al. 2014

Histone marks Kala and Tollefsbol 2016; Majid et al. 2008,
2010; Venturelli et al. 2013

Mixtures
Mixed contaminants (indus-
trial chemicals, e.g., p,p 0-
DDE, Li, Fe, Ni, Sb, Pb,
Bi, V, As, S)

— — — — + DNA methylation Guillette et al. 2016

Mixture—plastic derived
EDCs (BPA, DEHP, DBP)

— + — — — DNA methylation Manikkam et al. 2013

Total xenoestrogens — — — + — DNA methylation Vilahur et al. 2014
Others
Metals (e.g., inorganic As,
Cd, Cr, Pb)

— + + + — DNA methylation Castillo et al. 2012; Doi et al. 2011; Meakin et
al. 2019; Pilsner et al. 2009; Ronco et al.
2010; Sen et al. 2015; Smeester et al. 2011;
Winterbottom et al. 2019

Histone marks Cronican et al. 2013; Jo et al. 2009; Li et al.
2002; Winterbottom et al. 2019; Zhou et al.
2009; Zhu et al. 2018

Chromatin
accessibility

VonHandorf et al. 2018

Noncoding RNA Cheng et al. 2018
Tetrahydrofurandiols — + — — — Histone marks Shoulars et al. 2008
Vinclozolin — + — + — DNA methylation Anway et al. 2005; Beck et al. 2017; Goodrich

et al. 2019; Guerrero-Bosagna et al. 2010,
2012; Iqbal et al. 2015; Lee and Oh 2012;
McCarrey et al. 2016; Pietryk et al. 2018

Histone retention
sites

Ben Maamar et al. 2018

Noncoding RNAs Brieño-Enríquez et al. 2015; Schuster et al.
2016

Zearalenone — + + — — DNA methylation Gao et al. 2019; Karaman and Ozden 2019;
Men et al. 2019

Histone marks Gao et al. 2019; Men et al. 2019

Note: Animal studies include findings in both vertebrate and invertebrate models. Plus signs (+) indicate that there is evidence that the compound(s) in question exhibits epigenetic-
modulating properties in the systems specified. —, Not applicable; As, arsenic; BDE 47, tetrabromodiphenyl ether; Bi, bismuth; BPA, bisphenol A; Cd, cadmium; Cr, chromium;
DBP, dibutyl phthalate; DEHP, di-2-ethylhexyl phthalate; EDC, endocrine-disrupting chemical; Fe, iron; Li, lithium; Ni, nickel; Pb, lead; p,p 0-DDE, p,p 0-dichlorodiphenoxydichloro-
ethylene; S, sulfur; Sb, antimony; V, vanadium.
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et al. 2014; Ji et al. 2010) and in vivo (Philbrook andWinn 2015) ex-
perimental systems, recapitulating the effects observed in exposed
humans. Cells subjected tomultiple rounds of exposure to hydroqui-
none, a benzene metabolite, over a period of 5 weeks exhibited a
gradual increase in the levels of H3K4me3, an active histone mark
(Mancini et al. 2017). In mice, exposure to benzene was associated
with lower levels of peripheral blood cells and hematopoietic pro-
genitor cells in the bone marrow and alterations to the miRNAs
mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p, mmu-
miR-181a-5p, and mmu-miR-196b-5p, many of which are dysregu-
lated in hematologicalmalignancies (Wei et al. 2015).

Vinclozolin—Transgenerational Impacts on the Epigenome
Vinclozolin is a dicarboximide fungicide used on fruits, vegetables,
ornamental plants, and turf grass and is a prominent example of an
environmental toxicant capable of triggering adverse health effects
long after the initial exposure (Uzumcu et al. 2004). Mice exposed
to vinclozolin in utero displayed significantly higher numbers of ap-
optotic germ cells at puberty [postnatal day (PND) 20], an effect that
became more pronounced in adulthood (PND60) (Uzumcu et al.
2004). Moreover, maternal exposure to vinclozolin negatively
affected fertility in male mice in the descendent F1 generation and
epigenetic alterations inmore than 1,000 targets (primarily hypome-
thylation events) compared with controls (Lee and Oh 2012).
Guerrero-Bosagna et al. (2012) further observed that differential
DNA methylation patterns could be observed up to the F3 genera-
tion of vinclozolin-lineage mice (Guerrero-Bosagna et al. 2012).
Interestingly, administration of vinclozolin to pregnant mice led to
higher levels ofDNAmethylation in the promoters of two paternally
imprinted genes [imprinted maternally expressed transcript (H19)
and maternally expressed 3 (Gtl2) also known as Meg3] and lower
levels of DNA methylation in regions regulating three maternally
imprinted genes [small nuclear ribonucleoprotein polypeptide N
(Snrpn), paternally-expressed Gene 1 (Peg1) also known as Mest,
and paternally expressed 3 (Peg3)] (Stouder and Paoloni-Giacobino
2010). In Sprague-Dawley rats, alterations in more than 200 small
ncRNAs (Schuster et al. 2016) and 99 histone retention sites (Ben
Maamar et al. 2018)were observed in the sperm from the F3 genera-
tion of vinclozolin-lineage rats comparedwith the control group. The
F3 generation of vinclozolin-lineage male rats had higher incidence
of prostate histopathology and abnormalities and displayed altered
gene expression, ncRNA expression, and DNAmethylation patterns
comparedwith the untreated controls (Klukovich et al. 2019).

Because the abovementioned studies suggest that vinclozolin
can induce transgenerational epigenetic effects, it stands to reason
that differential epigenetic marks observed in the F3 generation
should also be present in the F1 and F2 generations of the
vinclozolin-lineage rats or mice. Intriguingly, however, analyses of
F1 and F3 vinclozolin-lineage rats revealed that although there were
a total of 290 differentially methylated regions (DMRs) (p<10−4)
in the F1 generation (control vs. vinclozolin-lineage animals) and a
total of 916 total DMRs in the F3 generation, there was no overlap
between the F1 and F3 DMRs (Beck et al. 2017). This indicates that
the epigenetic alterations accumulated in vinclozolin-lineage rats or
mice are not directly inherited by subsequent generations. Instead,
exposure could result in alterations to developmental programing
and epigenetic mechanisms in early generations that are transmitted
to subsequent generations, amplifying differences in epigenetic pat-
terns between control and exposure-lineagemice.

One caveat to these findings, however, is that the transgenera-
tional epigenetic effects of vinclozolin were reported in studies
using intraperitoneal administration of vinclozolin at 100 mg=kg
body weight per day (Ben Maamar et al. 2018; Lee and Oh 2012;
Nilsson et al. 2018; Stouder and Paoloni-Giacobino 2010; Uzumcu
et al. 2004). This is orders of magnitude above the calculated

chronic population adjusted dose of 0:0012 mg=kg per day (U.S.
EPA 2000) or the estimated occupational exposure in production
workers (0:012 mg=kg per day) (Zober et al. 1995). To our
knowledge, there is currently no evidence that vinclozolin indu-
ces transgenerational effects when administered at lower doses
and via dermal and/or oral routes, which are arguably closer to
the likely routes of vinclozolin exposure in humans.

Bisphenol A—a Stealthy Hazard
No summary on environmental toxicants could be complete without
the mention of BPA. BPA is now a household name, and it is not
uncommon to see “BPA-free” statements on plastic products or
printedmaterial. Despite efforts to limit the usage of BPA,BPA pro-
duction is predicted to increase in the coming decades (reviewed by
Almeida et al. 2018). BPA is a known endocrine disruptor, exhibit-
ing agonistic effects on both estrogen receptors alpha and beta
(ERa and ERb), and antagonistic effects on the androgen receptor
(Delfosse et al. 2014).Awide range of health effects have been asso-
ciated with BPA exposure, including obesity, reduced reproductive
capacity, and metabolic disease (Manikkam et al. 2013). Traces of
BPAwere detected in 92.6% of sampled participants from theNational
Health and Nutrition Examination Survey (NHANES) (Calafat et al.
2008), suggesting that exposure toBPA is nearly ubiquitous.

BPA exposure has been consistently associated with hypome-
thylation in repetitive elements in humans (Faulk et al. 2015; Miao
et al. 2014; Zheng et al. 2017). In a cross-sectional human study,
multivariate analysis indicated that workplace BPA exposure was
associated with significantly lower long interspersed nuclear ele-
ment 1 (LINE-1)methylation levels relative to an unexposed control
group, and that urine BPA levelswere significantly inversely associ-
ated with LINE-1 methylation in sperm (Miao et al. 2014). In cor-
roboration with this, a similar study reported that sperm collected
from BPA-exposed men exhibited 19.6% higher levels of global
5-hydroxymethylcytosine, an intermediate of the demethylating
process by ten-eleven translocation (TET) enzymes, compared with
men without occupational exposure to BPA (Zheng et al. 2017).
Interestingly, an epigenome-wide study on human fetal liver tissue
reported that although exposure was generally associated with
global hypomethylation, increasing BPA levels were positively cor-
related with hypermethylation of CpG islands, suggesting that the
effects of BPA on DNA methylation and gene expression are
genomic region-dependent (Faulk et al. 2015). In utero exposure to
BPA was also found to induce persistent epigenetic effects. Using
data froma longitudinal birth cohort, Goodrich et al. (2016) reported
that blood leukocyte DNA methylation in participating peri-
adolescents was positively correlated with increasing BPA levels
both in archivedmaternal urinary samples collected during the third
trimester of pregnancy and in the urinary samples obtained from the
peri-adolescents themselves. Although this positive correlation was
observed at all analyzed loci, namely, the LINE-1 repetitive ele-
ments, and imprinted genes H19, IGF2, and HSD11B2, statistical
significance was observed only when associating maternal urinary
BPA levels with IGF2 hypermethylation (Goodrich et al. 2016).
However, thesefindings are not completely concordantwith the pre-
viously described results in human subjects whereby BPA exposure
was associated with decreased LINE-1 methylation. Nevertheless,
taken together, these reports suggest that environmentally relevant
concentrations of BPA can affect the epigenome.

The effect of BPA on the epigenome, including persistent and
early life effects, has been demonstrated in numerous experimental
models (Table 1). For example, prenatal exposure to BPA resulted in
dysregulated expression of the lncRNAs Xist and its antisense Tsix in
the mouse brain, suggesting that in utero BPA exposure during the
critical period of brain development may affect neurodevelopment
through the deregulation of epigenetic mechanisms involved in X-
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chromosome inactivation (Kumamoto and Oshio 2013). Epigenetic
alterationswere detected inmice exposed to environmentally relevant
doses (as low as 50 ng=kg) of BPA during development (Anderson
et al. 2012). Similarly, rats exposed to transient, environmentally rele-
vant doses of BPA exhibited greater prostate gland susceptibility to
adult-onset precancerous lesions and persistent alterations in DNA
methylation patterns (Ho et al. 2006).

However, it is worth noting that studies on BPA have not been
immune to flaws in design and execution. An expert opinion on the
design and execution of the Consortium Linking Academic and
Regulatory Insights on BPA Toxicity (CLARITY-BPA) study has
highlighted that theuseofgavageasa routeof exposure,withoutanon-
gavaged negative control, could complicate the interpretation of the
results and lead to erroneous conclusions (vomSaal 2019). This argu-
ment was previously made by Vandenberg et al. (2014) in the context
of EDCs (Vandenberg et al. 2014), indicating that further review and
reconsiderationof supposedlyestablishedmethodsmaybe inorder.

Discussion

Epigenetic Marks in Risk Assessment
As described in the previous section, stable epigenetic patterns
can be observed in response to a wide range of environmental
toxicants. Thus, we hold the opinion that there are clear benefits
to using epigenetic marks as biomarkers of exposure, for reasons
which will be discussed in this section. For instance, DNA meth-
ylation events are particularly attractive as biomarkers because of
their relative robustness in different storage conditions (Ghantous
et al. 2014; Thirlwell et al. 2010; Wong et al. 2008).

Moreover, the properties of DNA methylation biomarkers as
both stable and responsive to environmental cues make them attrac-
tive candidates as markers of exposure and predictive markers of
disease (Ladd-Acosta 2015). DNA methylation-based predictors of
health and lifestyle factors such as smoking habits (Ambatipudi et al.
2016; Bojesen et al. 2017; McCartney et al. 2018; Philibert et al.
2012, 2016), alcohol consumption (McCartney et al. 2018), and
body mass index (McCartney et al. 2018) have been described and
have been proposed as molecular predictors of disease and morbid-
ity or as an alternative to self-reported measurements. Because epi-
genetic marks can persist even after cessation of the exposure, using
epigenetic marks as biomarkers of exposure could be particularly
useful in situations where the exposures tested have short half-lives
in vivo (Ladd-Acosta 2015).

As biomarkers of disease, epigenetic disease signatures, or epis-
ignatures, have been described in cancers (Crujeiras et al. 2019), neu-
rological diseases (Bend et al. 2019; De Jager et al. 2014; Henderson-
Smith et al. 2019), and heart diseases (Roetker et al. 2018) andmay be
applied as molecular predictors of disease or indicators of disease
progression. Epigenetics-based diagnostic tests are already commer-
cially available; examples include the DNA methylation-based Epi
proColon®2.0CE (EpigenomicsAG) for colorectal cancer (Lamband
Dhillon 2017) and the miRNA-based RosettaGX Reveal™ (Rosetta
Genomics) for thyroidmalignancies (Lithwick-Yanai et al. 2017).

Episignatures as biomarkers have, in theory, the potential of
capturing information on current tissue states, predisposition to
disease, and the cumulative effects of environmental stressors
and exposures. However, although carcinogenicity testing is an
important component of testing for regulatory approval, the role
of toxico-epigenomics in the risk assessment process has yet to
be established (Herceg et al. 2013; Ray et al. 2014).

Challenges of Applying Epigenetics in Toxicology
A major impediment to the application of epigenomic analysis in
toxicology is the fact that consensus normal epigenomes have yet

to be fully defined for all tissue and cell types (Stueve et al. 2016;
Tonge and Gant 2016). Given the large epigenetic variability
within and between tissue types, age groups, and populations, ref-
erence epigenomes are particularly critical (Marczylo et al. 2016;
Marsit 2015) because comparing epigenetic patterns across heter-
ogeneous sample groups without suitable adjustment will, in our
experience, substantially reduce statistical power.

These challenges could be overcome in the near future with
the introduction of correction methods for cell-composition
effects (Breeze et al. 2016; Houseman et al. 2016; McGregor et al.
2016; Zou et al. 2014) and the generation of cell-type-specific
epigenomic maps by large-scale initiatives of the International
Human Epigenome Consortium (Bujold et al. 2016), namely,
Encyclopedia of DNA Elements (ENCODE) (Djebali et al. 2012;
ENCODE Project Consortium 2012), the National Institutes of
Health Roadmap Epigenomics Program (Roadmap Epigenomics
Consortium et al. 2015), the BLUEPRINT projects (Fernández
et al. 2016), and the 4D Nucleome Project (Dekker et al. 2017).
The Toxicant Exposures and Responses by Genomic and
Epigenomic Regulators of Transcription (TaRGET) program pro-
vides an invaluable resource of high-quality transcriptomic, epi-
genomic, and chromatin accessibility data from experimental
in vivo systems that not only enables an improved understanding
of the potential impacts of environmental exposures on the epige-
nome but also provides a means to better assess the utility of sur-
rogate tissues (Wang et al. 2018). However, although these
resources have brought unprecedented progress to the field, gaps
remain in the representation of different human populations and
phenotypes that need to be addressed.

Another challenge that especially affects the testing of EDCs is
the fact that the health outcomes associated with exposure and epi-
genetic alterations can occur years or generations after the initial ex-
posure. As discussed in previous sections, epigenetic impacts are
often amplified when exposure occurs in early life (Barouki et al.
2018)—a vulnerable period that is not generally amenable to human
testing. A further complication is the fact that epigenetic mecha-
nisms act in concert to have a net functional effect on chromatin
accessibility and gene regulation (Kelly et al. 2010). Therefore, a
single end point measure is often insufficient to gain a thorough
understanding of the epigenotoxicity of a compound.

A potential solution for studying environmental chemicals
(such as EDCs) with unknown or persistent effects is to conduct
real-time observations of epigenetic states. In recent years, appli-
cations of reporter systems have enabled real-time observation of
DNA methylation, enhancing our understanding of the dynamics
of epigenetic states in development. For instance, in vitro report-
ers (Bintu et al. 2016; Stelzer et al. 2015), fluorescent probes spe-
cific for DNA methylation (Kumar et al. 2018), the MethylRO
mouse (Ueda et al. 2014), and the mCherry-MBD transgenic
zebrafish line (Zhang et al. 2017) enable users to observe spatial
and temporal changes to epigenetic states. An application of fluo-
rescence lifetime imaging-based Förster resonance energy trans-
fer (FLIM-FRET) has demonstrated the interactions between
epigenetic marks and the ERa and the disruption of these interac-
tions by the antiestrogen tamoxifen (Liu et al. 2019). High-
throughput applications of this approach could enable the screen-
ing of other endocrine regulators in response to a wide array of
environmental chemicals. Other live-cell methods include bimo-
lecular anchor detector (BiAD) sensors, which have been applied
for the detection of DNA methylation and H3K9me3 levels in
living cells (Lungu et al. 2017). This system gives a fluorescence
readout dependent on co-occurrent binding of epigenetic mark-
specific detector proteins and site-specific anchor proteins, which
are targeted to sites of interest by zinc-finger, transcription
activator-like (TAL)-effector or clustered regularly interspaced
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short palindromic repeats (CRISPR)-dCas9 systems (Lungu et al.
2017).

The third challenge is the limitations of current epigenomic
assays. Current assays can be broadly divided into three catego-
ries: measurements of global epigenetic effects, locus-specific
assays, and epigenome-wide methods. Commonly used measure-
ments of global epigenetic effects include techniques such as
high-performance liquid chromatography (Roberts et al. 2018),
mass spectrometry (Chen et al. 2013; Molden and Garcia 2014;
Yuan et al. 2014), dot blots (Jia et al. 2017), enzyme-linked im-
munosorbent assay (reviewed by Andersen et al. 2015), lumino-
metric methylation assays (Karimi et al. 2006), and bisulfite
pyrosequencing of repetitive elements (Yang et al. 2004). Cell-
based reporter assays for global methylation have also been
described (Baba et al. 2019; Yoshida et al. 2016). Although these
techniques have undoubtedly produced valuable findings, poten-
tially epigenotoxic compounds may induce locus-specific effects
that are too subtle to be detected by these methods. Moreover,
whereas DNA methylation levels in repetitive elements are often
used as surrogates for global DNA methylation, these readings
do not always correlate well with true global DNA methylation
(BLUEPRINT Consortium 2016).

Techniques that enable locus-specific assays include bisulfite
pyrosequencing, amplicon bisulfite sequencing, and cell-based re-
porter assays (Han et al. 2013; Stelzer et al. 2015). In vivo models
include intracisternal A-particle (IAP) mouse models, based on
IAP retrotransposon reporter-type systems (Blewitt and Whitelaw
2013). IAP mouse models display a range of coat color and tail
morphology changes that reflect epigenetic states in response to
test materials administered to the mice. One limitation of these
models is that changes in tail kinks and coat color may be subtle
and could be subject to observer bias. Moreover, a limitation that
affects all locus-specific assays is that a priori knowledge of the

gene to be analyzed is required, making such assays less useful in
screening for new epigenetic modifiers with unknown targets.

Epigenome-wide methods, as the name suggests, provides high
resolution and coverage for the epigenetic mark analyzed. Requiring
no a priori knowledge of potential targets, epigenome-widemethods
enable the discovery of new biomarkers and target regions.
Examples include DNA methylation arrays, reduced-representation
bisulfite sequencing (RRBS) (Meissner et al. 2005), histone chroma-
tin immunoprecipitation sequencing (ChIP-seq) (Schmidl et al.
2015), and whole-genome bisulfite sequencing (Urich et al. 2015).
These methods, although highly informative, are to our knowledge
not currently amenable to miniaturization or cost effective for
screening large libraries of compounds at a time. Nevertheless, this
could change in the near future as more resources are dedicated to
this field of study and the costs of sequencing and analysis are
reduced.

Evidently, none of the discussed methods would be univer-
sally applicable. In a review by Rasoulpour et al. (2011), the
authors suggested that the ideal toxicology screen should be scal-
able to medium or high throughput, be in vitro based, be cost
effective, have robust end points, and have good false-positive/
negative rates (Rasoulpour et al. 2011). Although none of the meth-
ods discussed match such an ideal screening method (Figure 2),
future technological advances could make this a reality.

One particularly exciting avenue of development is the rapid
advance of genome editing technology. The relative efficiency and
adaptability of CRISPR/Cas9/Cas12a (Campa et al. 2019; Ding
et al. 2019) techniques could soon give rise to multi-end point,
high-throughput, in vitro reporter assays for epigenetic modifiers.
In our view, the first challenge to reach this goal is to identify ro-
bust and biologically relevant end points for which reporter assays
could be generated. Future assays could reflect higher-order chro-
matin structures in biologically important regions of the chromatin,

Figure 2. Comparison of major techniques for epigenetics analyses on subjective scales for scalability and direct biological relevance. Axes are in arbitrary
scales, with scalability denoting how amenable a given technique is to be implemented in a high-throughput screening setting. Direct biological relevance
denotes how information-rich the results of a given technique are. Note: ATAC-seq, assay for transposase-accessible chromatin using sequencing; ChIP, chro-
matin immunoprecipitation sequencing; ELISA, enzyme-linked immunosorbent assay; HPLC, high-performance liquid chromatography; RRBS, reduced-repre-
sentation bisulfite sequencing; WGBS, whole-genome bisulfite sequencing.
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as opposed to being locus-specific. One of the most exciting new
developments in the field has been the development and refinement
of techniques that profile chromatin accessibility, whether by
sequencing (Buenrostro et al. 2015; Corces et al. 2018) or super-
resolution imaging (Bintu et al. 2018). As discussed previously,
examining a single aspect of epigenetic regulation may often be
insufficient, because epigenetic mechanisms typically work in con-
cert. By assessing higher-order chromatin states, these techniques
take into account the summation of these mechanisms. Although
these methods are currently not as easily implemented in a high-
throughput setting, further research in this field is certainly
warranted.

Finally, it may also be argued that in vitro screening measures
would be limited in identifying biologically relevant epigenetic toxi-
cants. However, we hold the opinion that the implementation of
screening programs is still useful because they could lead to the
identification of highly epigenotoxic compounds, thus halting their
use or introduction into the environment until further analyses are
carried out.Moreover, it is worth noting that each class ofmethod—
whether in vitro, in vivo, in silico, or based on populations—will

have a different capacity to provide different levels of evidence, as
well as different strengths andweaknesses (Figure 3A).

Even assuming that all the technical challenges can be over-
come, interpreting epigenetic results from the perspective of clas-
sical toxicology could still be complicated. For instance, if a
change in epigenetic state is identified, is it truly an adverse
event, or is it an early adaptive response? Is there a no-effect
threshold when it comes to epigenetic modification?

Strategies for Toxico-Epigenomic Screening
In addition to technical improvements, screening can be improved
by reassessing current strategies for evaluating environmental toxi-
cants as epigenetic modifiers. In this section, we discuss potential
strategies for conducting epigenomic screening in the face of cur-
rent technical limitations.

Applying drug discovery pipelines for identifying epigenetic
modifiers. Perspectives from the drug discovery pipeline could
prove useful for developing similar approaches for toxicological
screening. The burgeoning fields of computer-aided drug design

Figure 3. An integrative method for investigating the impact of environmental chemicals on the epigenome and a proposed approach for toxico-epigenomic
screening. (A) Comparison of in silico, in vitro, in vivo, population-based, and integrative methods in fully understanding the potential effects of environmental
chemicals on the epigenome. Dotted arrows indicate situations where evidence can be inferred but not directly proved by the described methods. (B) An illus-
tration of a proposed approach for toxicoepigenomic screening. A high-throughput screen (HTS) using in vitro and in silico methods can be conducted using
single compounds and mixtures. Hits identified from the Tier 1 screen can be characterized more extensively using relevant in vitro and in vivo experiments.
Finally, a systems toxicology approach could be used to integrate all data, including human data, to generate a complete profile of epigenotoxicology.
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and molecular docking have been successfully implemented for
drug discovery processes (Macalino et al. 2015). By using
homology models of the DNMTs or, in theory, any of the epige-
netic enzymes, it is possible to perform virtual screens of thou-
sands of compounds at relatively little cost. As reviewed by Lu
et al. (2018), this approach has already led to the discovery of the
DNMT inhibitors RG108, NSC14778, nanaomycin A, SET7 in-
hibitor DC_S100, and EZH2 inhibitor DCE_254, among others
(Lu et al. 2018). This approach could also be applied in toxicol-
ogy to screen for potential epigenetic disruptors. However,
although in silico approaches offer invaluable opportunities for
streamlining target discovery processes, this does not preclude
the usual standards of in vivo and in vitro testing. It does, how-
ever, enable the prioritization of potential targets.

On a related point, another approach for identifying lead chemi-
cals is to pinpoint molecular features that enable the identification
of epigenetic perturbagens. To date, common features have been
identified in a subset of epigenetic modifiers, for instance phenoxy-
acetic acid moieties in fibrates, and the presence of halogenated
polycyclic features in DDT, polychlorinated biphenyls, and chlor-
dane (Kobets et al. 2019). This approach has been challenging
because nongenotoxic epigenetic agents typically lack easily iden-
tifiable DNA-reactive chemical features. Moreover, as far as we
know, the features identified in fibrates and polychlorinated com-
pounds are not direct evidence of epigenetic-modifying ability.
However, we expect that improvements in computational technol-
ogy, artificial intelligence, and our understanding of the chemical
processes underlying epigenetic modifications could bring new
advances in this area of study.

Advances in high-content screening or high-content analysis
(HCS/HCA) can also be adapted for toxico-epigenomics. HCS/
HCA has been applied in drug discovery and has been driven by
advances in automated microscopy and image analysis (Esner
et al. 2018). An example of this is the recently described micro-
scopic imaging of the epigenetic landscape (MIEL) system
(Farhy et al. 2019). In this approach, the authors applied HCS
approaches for multiparametric staining and imaging of multiple
epigenetic marks. They demonstrated that the MIEL machine-
learning algorithm could accurately rank and classify epigeneti-
cally active drugs, proving that the imaging of epigenetic marks
and chromatin states can be added to the battery of possible HCA
phenotypic screens (Farhy et al. 2019).

Emulating the endocrine disruptor screening program. One
overarching approach may be to emulate and extend the Endocrine
Disruptor Screening Program (EDSP), which was implemented by
the U.S. Environmental Protection Agency (EPA) in response to
mounting concerns over EDCs (Fenner-Crisp et al. 2000). The
EDSP screens for chemicals that could perturb estrogen, androgen,
and thyroid systems in humans, fish, and wildlife and uses a
pathway-based approach in which potential lead compounds are
identified based on their interactions with endocrine pathways
without relying on the observation of an adverse response or phe-
notypic end point (Laws et al. 2011).

The EDSP uses a two-tier framework. Tier 1 was designed as
a screening tier, comprising multiple in vitro and in vivo test sys-
tems, which screen for a compound’s potential to interact with
endocrine pathways without considering potential adverse effects.
Tier 2 was designed to test established adverse effects and the
dose–response relationships of hits identified in Tier 1 of the pro-
gram (Fenner-Crisp et al. 2000). Using a similar approach, epige-
netic modifiers may first be identified based on their impact on
epigenetic enzyme activity or chromatin states, using techniques
that are readily implemented in a high-throughput setting. The
idea is that given the importance of epigenetic machinery in
determining cell fate and function, evidence that a compound is

capable of influencing epigenetic enzyme activity sufficiently
warrants additional research and testing. This approach is particu-
larly useful when applied to epigenetic modifiers because of the
breadth of possible health outcomes they could inflict.

Some limitations to this approach are that it is uncertain whether
it allows for adequately sensitive detection (Coady et al. 2017).
Moreover, without prior knowledge of apical or adverse outcomes,
it is uncertain whether Tier 2 testing would adequately capture the
toxicity profile of the test compounds and whether it accounts for
differences in species and life stages (Coady et al. 2017). Some
measures can be taken to at least in part mitigate the issue of sensi-
tivity. For example, the U.S. EPA suggested in a report that assay
sensitivity could bemaximizedwhile permitting an acceptable level
of false positives, based on the assumption that false positives could
be detected and eliminated in the second tier of the screen (U.S.
EPA 2006). Other approaches are to use multiple assays for each
end point, from which weighted data can be determined (Rotroff
et al. 2013); to use a screening strategy based on concentration–
response curves as opposed to single-dose assays (Inglese et al.
2006); and to use a compound set enrichment approach, whereby
potential active chemicals are identified in sets rather than as indi-
vidual compounds (Varin et al. 2010).

Adverse Outcome Pathways and Systems
Toxicology—Filling in the Gaps
A potential solution to the limitations discussed above is to imple-
ment the adverse outcome pathway (AOP) paradigm (Ankley et al.
2010). An AOP is a collection of data that connects an exposure to
an adverse effect through a series of separate but overlapping
pieces of evidence. In an AOP, a molecular initiating event (expo-
sure to a toxicant) must be shown to induce a series of key events
(e.g., DNA methylation change, transcriptional changes, sequence
changes, cell proliferation), which in turn are shown to result in an
adverse outcome (e.g., cancer, a disease state).

Although an AOP is itself a collection of correlative evidence, it
provides a framework for organizing data across multiple disci-
plines in a biologically plausible and evidence-based manner. The
AOP approach enables the integration of findings from epidemiol-
ogy studies, which are generally observational associations between
an exposure and adverse health outcomes, and in vitro and in vivo
studies. The totality of this evidence can be used to establish a causa-
tive link between the exposure and the adverse outcome.

An application of AOPs is the systems toxicology strategy,
which is based on the idea that any functional perturbation is a
result of changes in genomic, proteomic, and metabolic states
(Sturla et al. 2014). Systems toxicology integrates classical toxi-
cology with multiple levels of molecular data, with the aim of
establishing causality via a chain ofmolecular events. Systems tox-
icology aims to describe adverse biological effects as perturbed
networks, as opposed to empirical end points (Hartung et al. 2017).
This strategy has been made possible with advances in computa-
tional biology andmolecular biology techniques.

However, the successful implementation and practice of sys-
tems toxicology requires characterization of exposures with regard
to composition, dose, and duration, as well as extensive phenotypic
and molecular profiling of standard biological model systems.
Many of the building blocks for the widespread implementation of
systems toxicology are already in place. For instance, the L1000
and Connectivity Map resources developed through the Library of
Integrated Network-Based Cellular Signatures (LINCS) project
enable the prediction of mechanisms of action based on the gene
expression profile induced by a particular exposure (Li et al. 2019).
The connectivity framework has also been applied to define and
compare proteomic and histonemark signatures (Litichevskiy et al.
2018). Other valuable resources include the Toxin and Toxin-
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Target Database (T3DB), which makes gene expression data on
more than 3,600 compounds publicly available (Wishart et al.
2015), and the ENCODE project, which provides systematic
maps of regions of transcription, transcription factor association,
chromatin structure, and histone modification (ENCODE Project
Consortium 2012).

Chemical Mixtures—Something from Nothing?
An additional consideration is the fact that real-life exposures
typically occur as mixtures, as opposed to single agents (Kienzler
et al. 2016). There have thus been concerns that the risks of com-
plex chemical mixtures are not adequately assessed (European
Commission 2012; Kortenkamp 2014). A systematic review
aimed at quantifying synergetic toxicity in mixtures identified evi-
dence of synergistic interactions in a small subset of pesticides, met-
als, and antifoulantmixtures (Cedergreen 2014). Cedergreen (2014)
defined synergetic mixtures as those which elicited an observed
effect that was at least 2-fold greater than the predicted effect, using
concentration addition as a referencemodel.

As reviewed extensively by Bopp et al. (2019), the challenge in
realistically assessing exposure to mixtures is taking into account
the target population(s), the timing of exposure, or whether indi-
viduals or organisms are exposed to mixtures simultaneously or
sequentially (Bopp et al. 2019). Kienzler et al. (2016) described
current and potential future tools for modeling mixture effects but
indicated that further guidance, data, and expertise are required
before they can be fully applied (Kienzler et al. 2016). However,
the authors did note that there is still merit to assessing single sub-
stances because a thorough characterization of single agents could
minimize uncertainties and the requirement for assumptions in the
risk assessment of chemical mixtures (Kienzler et al. 2016).

An interesting proposal by Bornehag et al. (2019) suggests that
exposure mixtures should first be identified and reconstructed based
on evidence from epidemiological and biomonitoring data (Bornehag
et al. 2019). These mixtures can then be tested with in vivo experi-
ments to determine a point of departure associated with the studied
adverse health outcome, and the final step is to compare the similarity
of the experimental datawith outcomesmeasured in the human popu-
lation (Bornehag et al. 2019). In addition to taking into account mix-
tures in the risk assessment process, this approach could enable the
systematic integration of epidemiological and experimental evidence
(Bornehag et al. 2019). We note that with this proposed notion, the
mechanistic effects of combinations of chemicals—whether inde-
pendent, additive, or synergistic—are not a primary concern; the
main concern is that these mixtures are relevant based on epidemio-
logical and biomonitoring data.

We also note that there could be merit to the screening of
mixtures at the preliminary in vitro screening stage. This could,
at least in part, enable the detection of synergetic xenobiotic com-
binations that might have been missed if the constituent chemi-
cals were analyzed individually.

Bringing It All Together
Applying a combination of these approaches could prove useful
in screening for epigenetic modifiers. For instance, we envision
that assays for global changes in epigenetic or chromatin sates
could be used in a manner analogous to the EDSP Tier 1 screen-
ing method. This screen may include mixtures of chemicals that
have been identified and reconstructed through epidemiological
observations or biomonitoring data, as described by Bornehag
et al. (2019). Hits identified in Tier 1 screens can be further exam-
ined with more sensitive epigenome-wide techniques, followed
by the identification of phenotypic and molecular perturbations
incurred by the exposure. Tier 2 screens may also include time-

dependent, early life experiments in order to establish the full epige-
notoxicity profile of the exposures in question. Pathway-enrichment
technologies may then be applied to predict for epigenotoxicity, fol-
lowed by AOP to organize preliminary data into coherent chains of
evidence, and to identify areas in which further research is war-
ranted. Finally, hit compounds may be characterized using systems
toxicology approaches, ultimately resulting in comprehensive por-
traits of exposures and disease states (Figure 3B).

Perspectives for the Future of the Field
As with many aspects of molecular science, the field of epigenetics
has benefited greatly from computational and analytical advances
(Cazaly et al. 2019; Lim et al. 2010;Mensaert et al. 2014). Our view
is that the future iterations of toxicology are unlikely to consider
genetic, epigenetic, or proteomic factors individually, with more
calls to consider the totality of these mechanisms using multi-omics
analyses. This new horizon of possibilities allows for more optimis-
tic and ambitious concepts for the future of toxicology.

Another interesting concept is to generate fingerprints of expo-
sure to environmental toxicants using evolving -omics technologies
(Messerlian et al. 2017) and apply these signatures as biomarkers
and predictors of response. An important step toward this is to estab-
lish robust and universally recognized epimutation signatures, analo-
gous to the mutational signatures established by genome sequencing
(Kucab et al. 2019). Our view is that a compendium of epigenomic
signatures will enable systematic comparisons between test com-
pounds. An educated guess of an unknown compound’s mechanism
of action could be made, for example, based on the epimutation sig-
nature it induces in reference to known entries.With additional infor-
mation on toxicity and adverse outcomes, it may be possible to make
calls on how hazardous a compound is based on its epigenomic and
mutational signature. Libraries of phosphoproteomics and chromatin
profiles are already in development, using the connectivity frame-
work developed with the LINCSConnectivity Map in the context of
epigenetics (Creech et al. 2015; Litichevskiy et al. 2018). The avail-
ability and growth of these resources represent exciting opportunities
for the future of epigenomic research.

In an extension of -omics analyses, one of the most ambitious
concepts is that of the exposome, which is defined as a summa-
tion of an individual’s experiences over the course of his or her
lifetime, and the biological response to these exposures (Wild
2005). The exposome is represented by molecular measurements
influenced by a lifetime of exposure to a variety of factors such
as diet, lifestyle, infections, and psychosocial factors (Wild 2005).
The Human Exposome Project, the environmental analog of the
Human Genome Project, is a mammoth undertaking, because the
possible range of exposures and individual response is immensely
complex (Niedzwiecki andMiller 2017). Exposome research proj-
ects include the Human Early Life Exposome (HELIX) (Vrijheid
et al. 2014), enhanced exposure assessment and omic profiling for
high priority environmental exposures in Europe (EXPOsOMICS)
(Vineis et al. 2017), Health and Exposome Research Center:
Understanding Lifetime Exposures (HERCULES) (Niedzwiecki
and Miller 2017), and Health and Environment-wide Associations
based on Large population Surveys (HEALS) (http://www.heals-
eu.eu/; Sarigiannis 2014) projects. Although many of the proposed
ideas are not feasible at present, the concept of the exposome has im-
portant implications for the assessment of exposure in human health
research; for instance, considerations that environmental exposures
do not exist in isolation and that individual response to exposures
can be influenced by amultitude of inherent or acquired factors.

In our view, another major issue to consider in the future is
how well current assays are adapted for measuring the environ-
mental impact of chemical agents resulting from human activity.
Currently, most high-throughput assays are based on end point
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measures relevant to humans or mammals. Although this is of
clear importance, a holistic assessment of the impact of chemical
agents on the environment would require the development of ro-
bust nonmammalian or cross-species assays (Coady et al. 2017).

Conclusion
Significant advancements in analytical technologies are now ena-
bling more robust testing and risk assessment approaches in eval-
uating the hazards of environmental chemical exposure. With
accumulating evidence that environmental chemicals are at least
partially responsible for the onset of various noncommunicable
diseases, there is an urgent need to understand the mechanisms
underlying chemical-induced adverse outcomes. Considering epi-
genetic modifications in the risk assessment process could lead to
the development of more sensitive and predictive assays for
detecting chemical-induced changes. In view of the impact that
environmental chemicals could have on the environment, and on
current and future generations, increased efforts in research and
regulation are certainly warranted.
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